|
Posted: 06 Apr 2016 10:37 AM PDT In his novel The Twilight of Briareus (John Day, 1974), Richard Cowper, who in reality was John Middleton Murry, Jr., wrote about a fictitious star called Delta Briareus that goes supernova (true, there is no constellation called Briareus, but bear with me). Because it is only 130 light years out, the supernova showers the Earth with radiation, with consequences that are in some cases obvious, in others imaginative in the extreme. It’s a good read, one that at least one critic, Brian Stableford, has compared to J. G. Ballard’s early disaster novels. The novel contrasts an earthy domesticity with the celestial display that soon shatters it. It’s worth quoting a patch of the book:
And there we are, a supernova in progress, with results no one at this point in the tale can imagine. Cowper, who also wrote as Colin Murry, is a personal favorite. His short story collection Out There Where the Big Ships Go (Pocket Books, 1980) is a good introduction. Image: The cover of the US paperback of The Twilight of Briareus, the edition I read when it came out. Supernovae in the Pliocene?Putting humans under the torch of a supernova makes for exciting fiction, but new work from an international team of researchers now suggests a very real supernova — and probably a series of them — exploded in the Pliocene epoch and later, with evidence of radioactive debris indicating a window between 3.2 to 1.7 million years ago. That would place these events at the boundary between the Pliocene and the Pleistocene (the latter beginning 2.58 million years ago and ending 11,700 years ago).
We’re talking about supernovae no more than 300 light years away, which would make them comparable in brightness to the Moon, and certainly visible during daylight hours. Appearing in Nature, the work argues that iron-60 found in sediment and crust samples from the Pacific, Atlantic and Indian Oceans show Earth’s exposure to cosmic ray bombardment, but at levels that would have been too weak to cause major biological damage, much less extinctions. The team searched for interstellar dust by examining 120 samples of the ocean floor spanning the past eleven million years. All iron had to be extracted from the ocean cores, work performed at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Germany and the University of Tokyo, and the minute amounts of iron-60 had to be separated from terrestrial isotopes using the Heavy Ion Accelerator at ANU. The decay of the radioactive isotopes beryllium-10 and aluminum-26 was used to determine the age of the cores. Iron-60 itself has a half-life of 2.6 million years, unlike the stable iron-56, and as Wallner explains, is ‘a million-billion times less abundant than the iron that exists naturally on Earth.’ Interestingly, fallout shows up not only in the 3.2 to 1.7 million year window, but also at about 8 million years back. The researchers suggest that the supernovae responsible were probably found in a star cluster that has subsequently moved away from the Earth. A Writer’s Choice
What would the much closer supernova of the fictional Delta Briareus do to the Earth? In The Twilight of Briareus, the effect is largely meteorological. At first.
There is a compelling lyricism in Cowper’s fiction that eschews irony; in that sense he’s at odds with many of his contemporaries. What an interesting man. He gave up writing of any kind in 1986 and put his effort into painting and antiques, a kind of escape that makes him more akin to William Morris and his circle than, say, Anthony Burgess or Martin Amis (the latter detested his work). I’ve always been taken with Cowper’s elegance, and wonder what he would have done with ancient supernovae blossoming over one of his finely wrought landscapes. If only we knew. Cowper was devastated by the death of his wife Ruth, and died shortly after her in 2002. Today’s paper is Wallner et al., “Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe,” Nature 532 (07 April 2016), 69–72 (abstract). See also Breitschwerdt et al., “The locations of recent supernovae near the Sun from modelling 60Fe transport,” Nature 532 (07 April 2016), 73–76 (abstract). From the latter:
|



